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Convolutional Neural Networks are often trained on datasets of 
images. Sometimes the data is so large, a single sample 
cannot fit in memory. This requires splitting the sample over 
multiple nodes. The performance is constrained I/O, taking 
more time to move data than the computations itself.

This work aims to expand the implementation of CNNs in 
LBANN to reduce the overhead of I/O by loading the data 
across different nodes using MPI I/O.

Background

Application and Implementation Results

Neural Network Parallelism
• Model Parallelism: Splitting the model across resources
• Sample Parallelism: Splitting the data across resources
• Spatial Parallelism: Splitting the sample across resources
• These different methods can be combined together

This summer we are working with a large 3D cosmology dataset 
• Each sample is 1 GB, 4x512x512x512 
• Currently I/O takes more time than the computation

Results are collected by running the program outside of LBANN 
multiple times and averaging the results. Preliminary results show a 
promising speed up.
Next steps include: 
• Loading more samples
• Integrating into LBANN

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Conclusion
As datasets and sample sizes continue to grow it is important 
the tools can scale to match the needs. 
• As the results show we can achieve around a 3x speed up by 

using 5 nodes and MPI I/O, instead of a single node.
• This can be used in the future on datasets such as MRIs.
• This allows for more complex datasets to utilize machine 

learning.
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Figure 2:. Example cosmology data, a simulation of dark matter in the universe, 
evolved over 3 billion years to a redshift of 0. This will be used as input to the CNN.

• Instead of one process reading, partitioning and distributing the data, 
each process reads in a portion of the sample 

• The sample is split based on the amount of available processes 
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Figure 1. [A]  An example of Spatial Parallelism, [B] Sample Parallelism, without any spatial 
parallelism. 
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Figure 3. Each process will read in a portion of the sample using MPI I/O. 
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Figure 4. Example workflow each IBM Power 9 would read in the appropriate section of data

Figure 6. Preliminary results, 2 processes on each node reading in half of the data, as 
seen in Fig.1A. The data is of size 512x512x512x4, about 1GB each file. 
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