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Many simulations are needed to
discover interesting behavior

Surrogate model guides parameter 
search

The above system has 3 masses, two of which are connected to
thermal reservoirs at different temperatures. Each mass starts at rest, 
but is driven by the reservoirs (modeled mathematically as Langevin 
Reservoirs) according to a Stochastic Differential Equation (SDE). 

We can compute thermal currents with the following equations:
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We found parameters which yield atypical thermal current and built a surrogate model to predict it

Affiliations and AcknowledgementsUnder certain configurations of the system, J12 can be negative, 
representing a local thermal current moving from cold to hot. This is 
interesting because it locally contradicts the 2nd law of thermodynamics, 
even though globally the 2nd law still holds, since the total current still 
moves from the hot reservoir to the cold reservoir.

Only certain configurations 
produce interesting results

Leveraging LC to explore 
parameter space of system

Underlying dynamics:

Expensive simulations are needed to accurately compute steady-state
current values. I optimized the original code provided by our UC 
Merced collaborators, and parallelized it to be run on LC. Simulations 
ran ~3000x faster when executed on nodes of Surface.

Surrogate model predicts behavior 
without simulations

Grid search simulation results are in blue, and the model-predicted 
current values are depicted by the surface

Once a surrogate model is trained, it can be used to guide more 
targeted parameter searches. Standard optimizers can be used to 
maximize or minimize atypical current in parameter space. 

Applications

The techniques presented here are important for the future of applied 
science. This problem exhibits many of the properties that we see in ICF 
simulations. Many design problems, in fields such as materials science 
and manufacturing, require computationally expensive simulations. 
These simulations slow down the process of optimizing the properties of 
a material or process. Building a surrogate model can accelerate this 
design process. 

The specific system studied could be used as the basis of a “thermal 
computer”. Positive vs. negative thermal current could represent 1 and 
0, and this value could be flipped by adjusting system parameters

Next Steps
To reduce complexity, a subset of 4 of the 10 total system parameters 
were varied. To train a model on the larger parameter space, a more 
sophisticated sampling technique could be used, such as an 
evolutionary algorithm or Merlin, LLNL’s workflow framework for active 
learning with scientific simulations. The ongoing goal of this work is to 
develop the field of Scientific Machine Learning (SciML), to help bridge 
the gap between scientific simulation and machine learning.

We are now interested in characterizing transport not only in Thermal-
Mechanical systems, but also quantum transport in both photonic and 
spin systems. 
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