A community-based framework for assessing whole-brain functional connectivity
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Problem Statement Stochastic Block Model Framework Exact Recovery
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Theorem (AS 15) — If all community profiles are

functional connectomes (FCs).

* A critical step concerns thresholding spurious edge(s) in
FCs. State-of-the-art thresholding methods are largely
arbitrary and non-analytic.
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distinguishable, we can perform exact recovery.
Exact recovery in SBM (n, p,log(n) %) IS solvable and efficiently so if
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» exact recovery measured by Chernoff-Hellinger divergence
 This work paves the way to an automated thresholding of
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Data Description

= N orior knowl f communitv structures. 100 unrelated subjects in Human Connectome Project with resting state and 7 tasks:
L___C_;E l_ags_e_d_o_ _E _O___E_E(ig_e_e _CE___U__XE_U_C_U_ Ei---- Gambling, Emotion, Language, Motor, Relations, Social, and Working memory (\WM).
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Weak Recovery

Weak recovery: identify node’s community label correctly at rates better
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Figure 3: 1) SNR for one subject at rest and engaging different tasks. As expected, RSNs are most
prominent at rest; they are less prominent in all investigated tasks (for the majority of threshold
domain). There are task(s) that are more RSN prominent than other(s). ll) SNR for 10 subjects, at
rest. Here, there exist subject(s) that has rest SNR that is/are smaller than task SNR of subject on
the left plot.
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