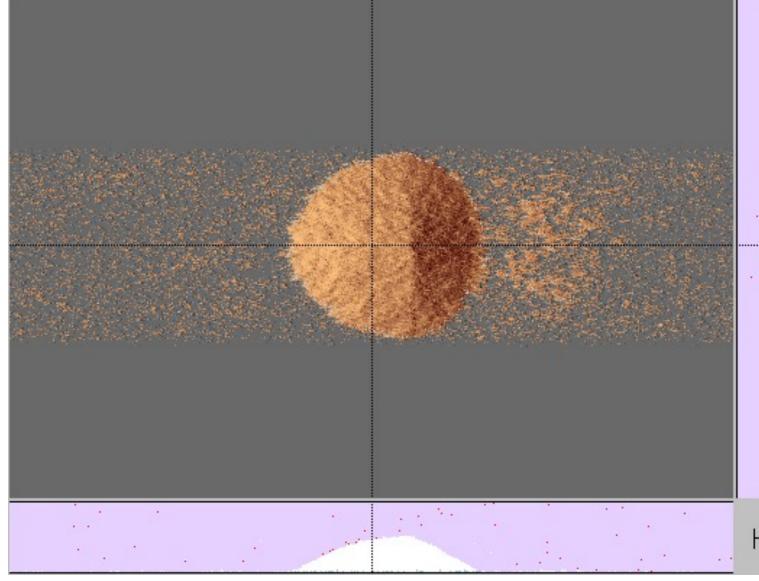


ABSTRACT

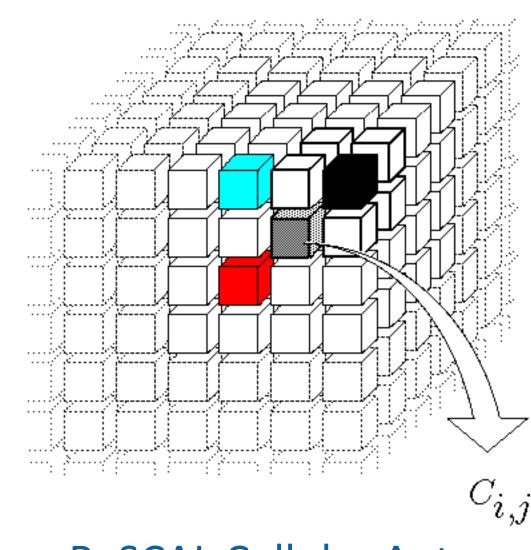
- ReSCAL (Real-Space Cellular Automaton Laboratory), a fully-developed numerical model, is a cutting-edge sand dune modeling software used widely across the geology community
- However, this simulation software is slow due to its reliance on physical calculations on a cell-by-cell basis
- Fortunately, Machine Learning algorithms have been proven to be faster due to their abilities to parallelize in training and almost instantaneous predictions
- Using real-world satellite elevation maps, a machine learning algorithm would allow us to predict sand dune movements farther into the future

INTRODUCTION

How ReSCAL models sand dunes: 3D multiphysics, markovian and stochastic cellular automata with continuous time



Example of a sand dune frame produced by ReSCAL Problem: ReSCAL is computationally expensive and difficult to parallelize for large-scale simulations \rightarrow Objective: replace with a Machine Learning model



- \rightarrow A 3 dimensional model.
- \rightarrow State variables.
- \rightarrow Nearest neighbour interactions.
- \rightarrow Individual physical processes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Sand Dune Video Prediction From Cellular Automaton to Convolutional Neural Networks (CNNs)

Divya Mohan (UC Berkeley), Jenna Horrall (James Madison University), Kelly Kochanski (University of Colorado Boulder), Barry Rountree (LLNL)

METHOD

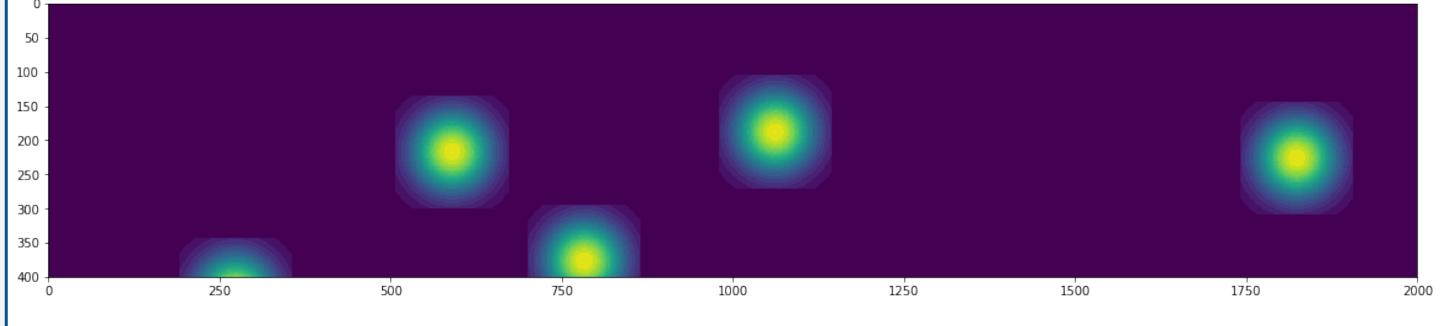
Data

- Data Source: Run ReSCAL on Quartz LC Machine to generate frames of sand dune movements
- Data Format: 2D Elevation Maps

	•				
0 -	ך0	0	0	0	Г0
1 -	0 0 0	2	3	2	0
2 -	0	3	6	3	0
0 - 1 - 2 - 3 - 4 -	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2	3	2	
4	0	0	0	0	Γ^0

A top-down view of a small hill

Data Collection: ReSCAL is set and calibrated with the parameters from [2]. Scenes consists of randomly placed Gaussian hills, varying the size and locations of the hills

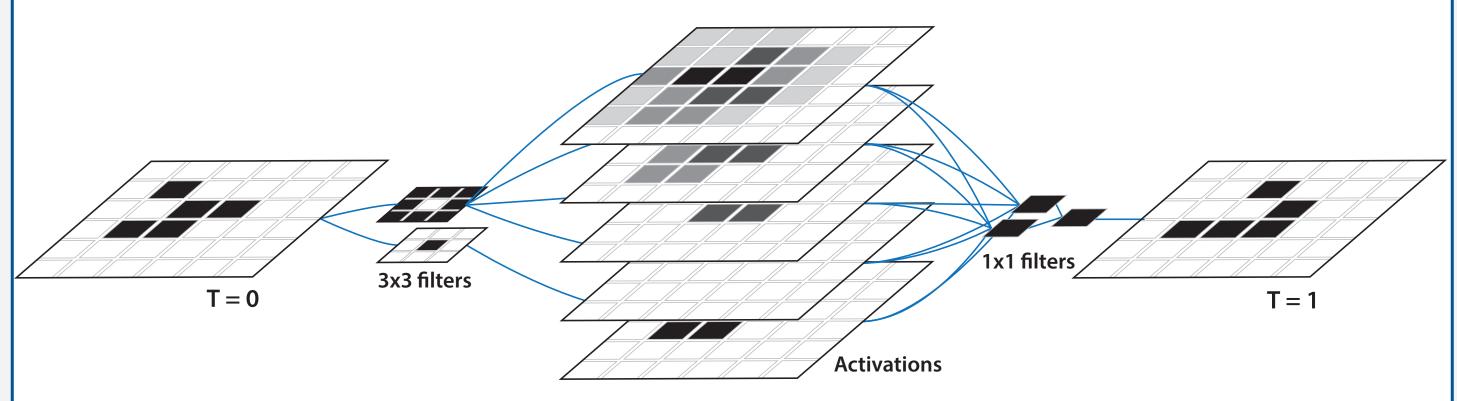


Objective

Given n_0 frames of dimension $L \times D$, predict the frame at a later time step n_f

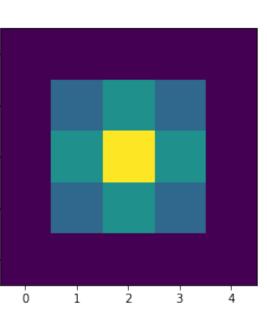
Model Selection

- Rather than approach this problem as a standard video prediction problem, I exploit the fact that ReSCAL uses a set of cellular automaton rules to produce each frame
- I selected a pre-implemented CNN model that trains from cellular automaton output and contains layers meant to emulate the cellular automaton process [3]



Neural network layers to represent cellular automaton (from [3])

Transitioning a Cellular Automaton Model to a CNN for Sand Dune Video Prediction



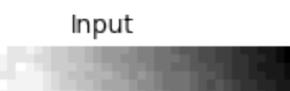
Time Efficiency

- 50×100×50 frame in 0.01~ seconds

Mean Square Error (MSE)

Step Size*

1	0
3	0
5	0
7	1
10	0
15	0
*Step size refers to a mo	de



Example of input frame at t_n , and expected/predicted frame at t_{n+1}

- locations of development

- 109. doi:10.1002/esp.3479

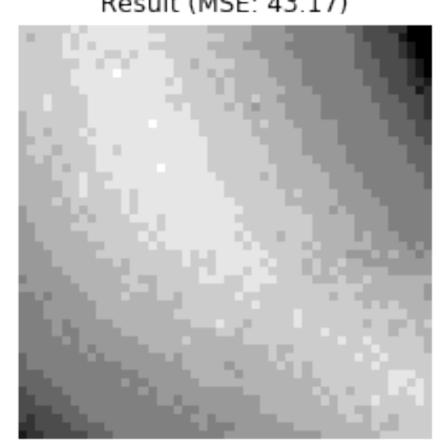
LLNL-POST-781437

Lawrence Livermore National Laboratory

RESULTS

ReSCAL generates two~ 1800×100×200 frames every hour After 24 hours of training, the CNN Model generates one

Mean MSE	Max. MSE
).9258	304.5295
).1508	22.1175
).2807	301.5770
2304	645.9474
).1752	45.6221
).7065	357.3875
el that, given $Frame_n$, p	redicts <i>Frame</i> _{n+STEP_SIZE}
Ground Truth	Result (MSE: 43.17)



DISCUSSION

The speed efficiency of a machine learning model versus a numerical model will allow for predictions of sand dune movements farther into the future, on the scale of years. The ability to predict the location of sand dunes holds capitalistic promise for determining potentially hazardous

REFERENCES

[1] Rozier, O. and Narteau, C. (2014), A real-space cellular automaton laboratory. Earth Surf. Process. Landforms, 39: 98-

[2] Narteau, C., Zhang, D., Rozier, O., and Claudin, P. (2009), Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms, J. Geophys. Res., 114, F03006, doi:10.1029/2008JF001127. [3] Gilpin, William. "Cellular automata as convolutional neural networks." arXiv preprint arXiv:1809.02942 (2018).

Contact: Divya Mohan <21dmohan@berkeley.edu>