

Manual extraction and organization of information from a large volume of documents is a slow and expensive process. An approach that can extract and synthesize information with minimal user input will allow for more efficient use of large document collections.

Automated Process Extracts Entities from Text

An automated process using part-of-speech tagging and crossreferencing of a knowledge base finds single- and multi-word 'phrases' in a corpus that are most likely to refer to a person, location, organization, or informative object or concept.

Anna Jurgensen (LLNL), David Buttler (LLNL)

Related Information Found by Comparing Text Embeddings

Transforming words and phrases into vectors that represent their context are combined to represent sentences and larger units of text.

skip-gram architecture of word2vec [3]

Vectors are compared to find related terms as well as sentences with similar information.

Semantic Graph Generation from a Large Document Corpus

Entities Linked by Extracted Relationships

After determining physical and conceptual entities, a taxonomy is computed to classify the entities with respect to each other.

artificial intelligence natural language processing information retrieval wireless_networks 🔿 pattern_recognition () computation (signal_processing O image_processing () computational_biology medical_imaging ()

example of a generated taxonomy, adapted from HiExpan [4]

construct a semantic graph.

demonstration of a semantic graph manually constructed from text embeddings, Probase [5] and AutoPhrase [1] [2] output

REFERENCES

[1] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, J. Han "Automated Phrase Mining from Massive Text Corpora" in IEEE Transactions on Knowledge and Data Engineering, 2018. [2] J. Liu, J. Shang, C. Wany, X. Ren, J. Han, "Mining Quality Phrases from Massive Text Corpora", Proc. of ACM SIGMOD, 2015.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, "Distributed representations of words and phrases and their compositionality", Advances in Neural Information Processing Systems, 2013. [4] J. Shen, Z. Wu, D. Lei, C. Zhang, X. Ren, M. T. Vanni, B. M. Sadler, J. Han, "HiExpan: Task-Guided Taxonomy Construction by Hierarchical Tree Expansion", Proc. ACM SIGKDD, 2018. [5] W. Wu, H. Li, H. Wang, K. Q. Zhu, "Probase: Probabilistic Taxonomy for Text Understanding", Proc. of ACM SIGMOD, 2012.

Lawrence Livermore National Laboratory

More complex relationships between entities are then found and used to