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For fine-grained feature learning from overhead imagery, we are
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Weighted Approximate-Rank Pairwise Loss (WARP Loss), with
some minor optimizations to improve runtime. We are also

X —1 Recall 0 20 0 40 0.40

I :i . Loss = In( ~ J(xg — x3) Precision

WARP Loss Equation

experimenting with cosine distance layers to better learn o TR o b o o
features, and improve image retrieval accuracy. X = Number of samples Ranking #2 .
Classification Probabilities [Positive Sample] x~ = Prob. Of neg. sample
- - NCT ; N x* = Prob. Of pos. sample Recall 020 0 40 0.60 0.80 1.0
Image Retrieval |

‘-~

af | , .
] G ___ Image@time,  image @timet, Precision 1.0
' T R AR ' i . ,

l.

* For the image retrieval task, the goal is to provide a query image and
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return the most similar images.
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WARP Loss + Cosine Distance Layer improves Fine-grained Image Retrieval Accuracy and Reduces Training Time.



